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Abstract. At low temperatures, the behaviour of structural phase transitions is modified by the
influence of quantum fluctuations. Such fluctuations enhance the stability of the high-symmetry
phase, reducing the observed transition temperature.

The effect on phase diagrams of temperature versus some other control parameter (e.g.
pressure or chemical composition) is described. A simple low-temperature extension of Landau
theory is used, where the extent of quantum mechanical effects is characterized by a saturation
temperatureθS . The theory is used to model the phase diagrams of the mineral anorthoclase
(θS = 271 K), the ferroelectric materials KH2PO4 (θS = 49 K), SrTiO3 (θS = 20 K for the 20 K
transition), KTaO3 (θS = 20 K) and SbSI (θS = 0 K). The saturation temperatureθS is related
to the extent to which changes in the hard phonon modes influence the transition mechanism.

1. Introduction

The thermodynamic stability of material phases at low temperatures needs special
consideration, because the third law of thermodynamics implies that the entropy change
at absolute zero temperature is zero. For structural phase transitions, this requirement
leads to the quantum saturation of order parameters [1, 2]. Quantum saturation affects the
variation of the order parameters with temperature, but not with the other variables which
may control the phase transition. For pressure or external fields conjugated to the order
parameter, the value zero is essentially arbitrary; there is no fundamental physical principle
which forbids positive or negative values, or which requires changes in their effect on the
transition. Chemical composition behaves somewhat differently. Pure endmembers can be
defined in a meaningful way, and very dilute solid solutions may behave anomalously. This
effect is related to the finite volume of material which any individual solute atom affects
[3].

The temperature at which a structural phase transition occurs is a function of the other
control parameters. We therefore have to consider the situation where the other control
parameters drive the transition temperature down to temperatures where quantum saturation
effects are significant. In such situations, we have the question of what a phase diagram
(e.g. temperature(T ) against pressure(p) or composition(x)) looks like. This is significant
technologically, since many useful material properties are enhanced in the vicinity of a
suitable phase transition (e.g. ferroelectrics such as PZT). These effects also have geological
applications in the modelling of the thermodynamic stability of minerals.
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The Clausius–Clapeyron equation determines the gradient of a (pressure–temperature)
phase diagram where the differences in entropy and volume between two phases are known:

dP

dT
= 1S

1V
. (1.1)

In the classical limit,1S is frequently proportional to1V , and then the transition
temperature is a linear function of pressure. However, at low temperaturesTC(p) and
TC(x) are often strongly non-linear, as shown below. From this, we may conclude that the
ratio1S/1V is temperature dependent, as the third law of thermodynamics predicts.

Earlier quantum mechanical calculations [4] have shown that the transition temperature
TC depends on an applied interactionS, according to the equation

TC ∝ (S − SC) in the classical limit

TC ∝ (S − SC)1/2 in the quantum mechanical limit
(1.2)

where S could be (for example) pressure or chemical composition. These calculations
describe the two limiting cases, but do not explain the behaviour of the crossover between
the two regimes. The model is also rather difficult to incorporate into systems where several
different phase transitions interact.

In this paper, we describe how the Landau theory of phase transitions can be used
to determine phase diagrams, and how the incorporation of quantum mechanical effects
correctly predicts the anomalies seen in phase diagrams at low temperatures. This approach
is then applied to several systems of geological or technological importance.

2. Theory

Our starting point is the Landau theory of phase transitions [5] which has been used to
model the thermodynamic behaviour of a number of mineral systems ([6–8] and references
therein). Its classical form,

G = A

2
(T − TC)Q2+ B

4
Q4+ C

6
Q6+ · · · (2.1)

is not expected to be valid at low temperatures, due to the third law of thermodynamics. To
take account of these effects, it is sufficient to modify the quadratic term in equation (2.1)
[1]. The resulting potential is

G = AθS

2

(
coth

(
θS

T

)
− coth

(
θS

TC

))
Q2+ B

4
Q4+ C

6
Q6+ · · · (2.2)

where θS characterizes the temperature of the crossover between classical and quantum
mechanical behaviour. Typically, a phase transition behaves classically forT > 3θS/2, and
is totally saturated (the order parameter is independent of temperature) forT < θS/2.

Equation (2.2) is exact in the displacive limit; in this caseθS is a function of the bare
soft-mode frequency [1]. For other phase transitions, there is (strictly speaking) no analytical
solution forG. However, equation (2.2) has been found to be a good approximation for the
solution of the self-consistency equations [2]. Furthermore, the saturation temperatureθS
has found to be correlated to the Einstein temperatureθE by θS ≈ θE/2. The full theoretical
treatment of phase transitions involving many phonons will be published separately; for
the purpose of this paper,θS can be viewed as an empirical measure of the temperature
below which the temperature dependence of the order parameter is dominated by quantum
mechanical effects.
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In order to model the phase diagram of a material, it is necessary to consider how
the coefficients in equation (2.2) will be affected by changes in pressure or chemical
composition. One of the attractive features of the Landau theory of phase transitions is
that this is easily accomplished, using the idea of order parameter coupling.

Provided the main effect of changing pressure is the energy due to the excess volume,
the energy associated with an applied pressure will be proportional topQ2 in the harmonic
approximation. Similarly, the energy associated with a solid solution is proportional toxQ2,
wherex is the variable composition parameter, proportional to composition unless the solid
solution is very dilute. An analogous argument applies to the effect of a uniaxial stress;
where the spontaneous strainεS ∝ Q2, the energy effect of an applied stress isσQ2. The
total free energy of a phase transition as a function of temperature and one of these other
interactions (x) is then

G = AθS

2

(
coth

(
θS

T

)
− coth

(
θS

TC

))
Q2+ B

4
Q4+ C

6
Q6+ AθSk

2
xQ2 (2.3)

where the interaction betweenQ andx does not vary strongly with temperature.
Equation (2.3) can be used to determine the equation of the phase boundary. For a

second order (B > 0, C = 0) or tricritical (B = 0, C > 0) transition, the transition point
will be when theQ2 prefactor is zero:

coth

(
θS

T

)
− coth

(
θS

TC

)
+ kx = 0 (2.4)

so

T ∗C(p, x) =
θS

coth−1 (coth(θS/TC)− kx)
. (2.5)

Figure 1 shows the difference between the classical and quantum mechanical models
for a temperature–composition phase diagram. Figure 1 also shows the plateau observed
for dilute solid solutions [3, 9, 10].

Figure 1. Composition–temperature phase diagrams predicted by the classical (broken line) and
quantized (solid line) Landau potentials.

One approach to understanding why the free energy expression in equation (2.3) works
is to consider the free energy of the material as the sum of the energies of the various
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phonons in the structure. Using this method equation (2.3) follows directly from the soft-
phonon-mode model of phase transitions [11]. If a structure contains a large number of
high-frequency hard phonon modes, those modes will individually saturate at relatively high
temperatures; the zero-point energy will be large compared to the thermal energy. If those
modes are coupled to the order parameter, order parameter saturation will set in at a high
temperature, leading to a significant non-linearity in the phase diagram. If, on the other
hand, the hard modes are not a significant driving force for the transition then the saturation
of the order parameter will depend solely on the soft-mode frequency. Near the transition
temperature, this will be low, and so the anomaly in the phase diagram will be rather small.

3. Example phase diagrams

3.1. Anorthoclase

Anorthoclase is a solid solution between two endmembers in the feldspar group of minerals:
analbite (NaSi3AlO8) and sanidine (KSi3AlO8), where Si and Al are fully disordered within
the tetrahedral sites. Anorthoclase undergoes a displacive transition(C2/m↔ C1̄) which
is hindered by the replacement of Na by K. Feldspar is a major component in igneous rocks,
and has been widely studied (e.g. [12,13]). To complement a detailed study of the Na rich
end of the solid solution [9], the(T , x) phase diagram around Na0.6K0.4Si3AlO8 has been
determined, and is shown in figure 2.

Figure 2. Experimental phase diagram for anorthoclase. The broken line shows an extrapolation
of the behaviour of more Na rich samples. The solid line shows the model in equation (2.5),
with θS = 271 K.

The saturation temperature determined by fitting the experimental points in figure 2 is
271 K. This is similar to the value obtained by fitting the temperature dependence of the
order parameter for pure analbite (θS = 268 K). θS is expected to have some composition
dependence: the hard-mode frequencies do show some variation with composition, as
measured by infrared spectroscopy [14]. However such changes are too small to measure by
this method. Comparison can also be made with the thermodynamic Einstein temperature
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of feldspar, which is in the range 550–580 K [15], approximately twice the saturation
temperatureθS obtained here.

3.2. KH2PO4

Potassium di-hydrogen phosphate is an extensively studied ferroelectric material (e.g.
[16–19]). It undergoes a phase transition between paraelectric (I 4̄2d) and ferroelectric
(Fdd2) phases at 122 K at room pressure. This transition is related to the orientation
of the O–H–O bonds, which link the PO4 groups. Thermodynamically, the transition is
close to the displacive limit and nearly tricritical [18].

The ferroelectric phase transition has been studied at high pressure [16, 19]. Both these
studies found a linear phase boundary at low pressures, with a significant deviation at higher
pressures, where the transition temperature is lower. Figure 3 shows that these data fit the
quantum entropy model well;θS = 49 K.

Figure 3. Phase diagram for KH2PO4. Data from Samara [16] and Nelmeset al [19] shows
saturation withθS = 49 K.

3.3. SrTiO3

Strontium titanate undergoes two phase transitions on cooling from room temperature. Under
ambient conditions SrTiO3 has the cubic perovskite aristotype structure. Below 103 K, the
octahedra rotate around the [001] axis, reducing the symmetry toI4/mcm.

At lower temperatures, a paraelectric–ferroelectric transition, which involves the off-
centring of the Sr and Ti cations, is expected. By analogy with PbTiO3, this transition would
be expected to occur above absolute zero kelvin at zero pressure, but SrTiO3 is paraelectric
at all temperatures [20]. Later measurements [21, 22] showed that the ferroelectric phase
was stabilized by applying a uniaxial stress. The stress–temperature phase diagram was
determined [23] and is shown in figure 4.

The quantum saturation parameterθS = 20 K for the ferroelectric transition in SrTiO3.
The extrapolated transition temperature at zero stress is 6 K, but complete saturation of
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Figure 4. Stress–temperature phase diagram for SrTiO3, (data from Fujii et al [23]). The
saturation temperature is 20 K.

Figure 5. Composition–temperature phase diagram for KTa1−xNbxO3, showing data from Rytz
et al [24], and a fit withθS = 20 K.

the phase transition occurs around 10 K. As a result, the paraelectric phase is stabilized by
quantum fluctuations.

3.4. KTaO3

KTaO3, like SrTiO3, has a perovskite structure. Although pure KTaO3 is paraelectric at all
temperatures, a ferroelectric phase transition is observed following either of the substitutions
Nb↔ Ta or Na↔ K. The experimental phase diagrams [24] are shown in figures 5 and
6. The (Nb, Ta) substitution on the octahedral cation site affects the ferroelectric transition
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temperature much more strongly than the substitution of Na for K. This difference does not
appear to affect the value ofθS . The phase diagrams for both limbs of the solid solution
give θS = 20 K.

Figure 6. Composition–temperature phase diagram for K1−yNayTaNbO3. Data from Rytzet al
[24] indicateθS = 20 K.

3.5. SbSI

Antinomy sulpho-iodide undergoes a tricritical ferroelectric phase transition near room
temperature at ambient pressure. The transition involves the displacement of S and Sb
along thec axis. There is very strong coupling between the electrical and volume effects
of this transition, making the material strongly piezoelectric. Another consequence of this
behaviour is that the phase boundary in (p, T ) space [25] is extremely steep (see figure 7).

There is no bending in the phase boundary of the type seen in the other systems studied.
In other words, at the transition point,θS is close to 0 K. The deviations from linearity at the
high-pressure end of the phase diagram probably occur because the approximation1V ∝ Q2

is only true as a harmonic approximation: as pressure is increased, higher-order terms must
also be considered.

4. Discussion

In using the equations (2.3) and (2.5) to describe these phase transitions, we have made the
following assumptions:

(a) Composition is essentially homogeneous throughout the material.
(b) All the pressure effects are in thep1V term, rather than the other coefficients being

pressure dependent.
(c) 1V ∝ Q2.
(d) θS is independent ofp, σ andx.
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Figure 7. Pressure–temperature phase diagram for SbSI (data from Samara [25]). No quantum
saturation effect is observed in the phase diagram.

The first of these assumptions is only relevant for the cases where a temperature–
composition phase diagram is used. On the length scale and with the sensitivity of the
experimental methods used, this assumption works well: the transition happens sharply at
a well defined temperature.

The fact that the classical parts of the pressure–temperature phase diagrams are linear
is good evidence for the second and third assumptions being generally applicable. SbSI
appears to be a case where anharmonic volume effects are significant. However, this effect
is only seen becauseθS is apparently zero.

The fourth assumption is approximately true for anorthoclase, KH2PO4, SrTiO3 and
KTaO3, but totally incorrect for SbSI. The behaviour ofθS reflects the hardness of the
phonon modes driving the transition. In SbSI, the behaviour of the phase transition appears
to be determined by the soft mode alone.θS is determined by the bare frequency of the
soft mode, which goes to zero asTC goes to zero. Thus at the low-temperature end of the
phase diagramθS disappears, and so no anomaly is seen in the phase diagram.

Table 1 summarizes the values ofθS obtained for various materials. In all cases
examined, there is good agreement between the experimental phase diagram and the
predictions of the modified Landau potential.

Some interpretation of the variation inθS can be made in terms of the crystal structures of
the materials studied.θS is largest in the framework silicate minerals: anorthoclase, anorthite
and quartz. This is due to the importance of the SiO4 tetrahedron as the basic unit in the
frameworks of all these structures. These tetrahedra are extremely stiff, and so vibrations
which involve distortions of the tetrahedra have very high frequencies. Framework silicates
therefore have a large number of hard phonon modes, which saturate at relatively high
temperatures.

The fact thatθS is large also shows that these transitions are driven by excitations (e.g.
soft modes) which are strongly coupled to the hard phonons. It is the hard modes which
saturate at higher temperatures, and the hard-mode saturation leads to saturation of the order
parameter. In SbSI, the phase transition is purely due to the soft mode [26]; no coupling to
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Table 1. Values of the saturation temperature for various phase transitions. References given are
for the experimental data. Materials markeda are analysed in this study and are based on phase
diagram measurements; the analyses of materials markedb are from [1] and are determined by
measuring the order parameter as a function of temperature.

Transition θS (K) Source

CaAl2Si2O8 265 [27]b

KH2PO4 49 [15,18]a

KTaO3 20 [24]a

LaAlO3 194 [28]b

Mo8O23 131 [29]b

NaxK1−xAlSi3O8 271 this studya

NaNO3 165 [30]b

Pb3(PO4)2 292 [31]b

SbSI 0 [25]a

SiO2 (quartz) 334 [2]
SrTiO3 (20 K transition) 20 [23]a

SrTiO3 (103 K transition) 60 [32]

hard modes seems to occur, and so the saturation temperature depends on the bare soft-mode
frequency.

Another significant feature of table 1 is that theθS values for the two different transitions
in SrTiO3 are very different. The most likely explanation of this is that the couplings between
the various phonons and the two order parameters are not the same. The ferroelectric
transition at 20 K depends on the off-centring of the Ti cations, and so is not greatly affected
by distortions outside individual octahedra. Consequently, the 20 K transition is much less
strongly coupled to the phonon heat bath than the 103 K transition, which involves coupled
rotations of all the TiO6 octahedra. This weaker coupling would result in a substantially
lower value ofθS .
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